ITMD Annual Workshop 2022

Data management and visualization for large datasets at CMOP

Charles Seaton CMOP coordinator

History

Observations

Data Management

Data Visualization/Access

History: How did we get here?

1990-2000: LMER

- Science
- Designed to study Estuarine Turbidity Maxima (ETM)
- "Blind" cruises.

1996-2006: CORIE

Science & Translation

- Multi-purpose design (driver: circulation modeling)
- Physical sensors
- Endurance stations
- Real-time data
- Open-access data
- Model-informed cruises
- IOOS/NANOOS pilot project

2006-2016: SATURN

- NSF-Science and Technology Center
- Multi-purpose design
- Interdisciplinary sensors
- Specialty endurance stations
- Pioneer array
- Coordinated campaigns
- Adaptive sampling
- IOOS/NANOOS sub-system

For historical context:

2007 - NOAA creates IOOS

2007 – OOI IOs selected

2020 onward: CMOP at CRITFC

- Interdisciplinary sensors
- Specialty endurance stations
- IOOS/NANOOS sub-system

Observations: Observation network (April 2022)

Station Design

Interdisciplinary stations

Offshore (SATURN-02): Jun-Oct
Pt Adams (SATURN-03): Year-round
Tongue Pt. (SATURN-04): Year-round
Baker Bay (SATURN-07): Year-round
Youngs Bay (SATURN-09): Year-round

North Channel (SATURN-01): -2017

Physical stations

Elliott Pt. (eliot): Year-round, 2017-

Cathlamet Bay (cbnc3): Year-round

(no telemetry)

Woody Island (woody): Year-round

Upriver interdisciplinary stations:

SATURN-05 (Port Westward), SATURN-06 (Morrison Bridge), and SATURN-08 (Camas-Washougal) were developed by the Needoba-Peterson lab at OHSU as part of STC-CMOP in collaboration with USGS (-05, -06) and LCEP (-08). They did not transition to CRITFC-CMOP.

Observations: What we Measure

Cbnc3: salinity, temperature Woody: temperature

Observations: Power of Long Timeseries

12-year history of hypoxia in the lower estuary

Data Management: Data transfer system

Data tables and metadata: oxygen example

Deployment

Deploymentid

Station

Depth

Bracket

Instrument

Instrumenttype

DeployedOn

RetrievedOn

Samplerate

Currentornull

ConfigurationDetail

Deploymentid

Property

Type

Value

OxygenVoltage

Deploymentid

Time

OxygenVoltage

RawRecord

Entered

Oxygen

Deploymentid

Time

Oxygen

OxygenSaturation

Temperature

Salinity

RawRecord

Entered

CTD

Deploymentid

Time

Temperature

Salinity RawRecord

Entered

- Each instrument has its own tables, with shared metadata tables for similar data types (e.g. fixed stations)
- For the example of oxygen, the oxygen sensor returns a voltage, which must be combined with instrument calibration coefficients and salinity and temperature from a co-deployed CTD to generate oxygen concentration and oxygen saturation
- Conversion from OxygenVoltage table to Oxygen table is handled by a dedicated script

Offering Schema

Example offering: Saturn03.1300.R.Oxygen

- Offering: Saturn03.1300.R.Oxygen, type: 'fixed depth'
- Offering metadata:
 - Table Name: oxygen
 - Station: saturn03
 - Depth: 13m
 - Bracket: 'R'
 - Pumped: true
- Offering variables:
 - Oxygen, units: ml/l, in water, offeringvariable_metadata:
 - Column: Oxygen
 - Sample rate: 3
 - Visibility: public
 - Dimensions: {'time':'time'}

Data access and visualization technologies

- Data access for long time series data from a database is not particularly fast, all fields of individual data records are contiguous rather multiple records of single field/variable
- NetCDF binary data format is designed for efficiently storing data with metadata in a format that allows rapid access along a primary data axis (e.g. time in a timeseries)
- CMOP-built interfaces use python to access and visualize from netcdf cache
- ERDDAP is an open-source tool developed by NOAA, which can be used to serve and visualize data (either raster/image data or tabular data) stored in a wide variety of formats, including databases, text files, netcdf files

Data access/visualization interfaces

- Data Explorer: used to generate the oxygen stripe plot (<u>www.stccmop.org/datamart/observation_network/dataexplorer</u>)
- Station pages (<u>www.stccmop.org/datamart/observation_network</u>)
- ERDDAP (coastwatch.pfeg.noaa.gov/erddap/index.html)
 - CMOP ERDDAP: data.stccmop.org:8080/erddap (in development)
- External sites:
 - NANOOS NVS (nvs.nanoos.org/Explorer)
 - NOAA NDBC (www.ndbc.noaa.gov/)
 - NCEI National archive (https://www.ncei.noaa.gov/access/search/index)
- Each external site uses its own data transfer protocol, although all are moving towards using ERDDAP

Data Management summary

- Data transfer from field to data center
- Raw data stored in text files and in database
- Processed data stored in instrument-specific database tables
- "Offering schema" used to connect instrumentspecific tables to metadata
- Data converted from database tables into flat file cache in NetCDF format
- Data access and visualization uses NetCDF file cache for speedy access

